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1. Introduction

In [1], it was proposed that the low energy effective theories of coincident M2 branes are

described by superconformal field theories in which Chern-Simons gauge fields couple to

scalar and spinor fields. Recently, the N = 8 superconformal Chern-Simons theory was dis-

covered by Bagger and Lambert [2 – 4]. A closely related work is [5]. The theory has SO(4)

gauge symmetry. There have been numerous subsequent attempts to generalize the theory

especially to extend to the gauge group other than SO(4) [6 – 13]. More recently, Aharony,

Bergman, Jafferis and Maldacena [14] discovered a family of N = 6 superconformal Chern-

Simons theories with matter fields. Their construction contains the Bagger-Lambert theory

as a special case. In the AdS/CFT context [15 – 17], the theories are conjectured to be

dual to M theory on AdS4 ×S7/Zk, and to type IIA string theory on AdS4 ×CP3 in the ’t

Hooft limit (large N with N/k fixed). Soon after that, generalizations to various directions

have been explored [18 – 31].

In this paper, we will start with the three-dimensional U(N) × U(N) Chern-Simons

Lagrangian plus the kinetic terms for four boson and fermion matter fields in the bi-

fundamental representation of the gauge group. Then we will supersymmetrize the La-

grangian in such a way that the resulting Lagrangian has N = 1 supersymmetry. In [32],

it was shown that, if we require SU(4) global R-symmetry, we end up with the N = 6 su-

perconformal Chern-Simons theory constructed in [14]. Here, we will instead require that

the Lagrangian has N = 1 supersymmetry with Sp(2) ⊂ SU(4) global symmetry.1 The

supercharge is a singlet under Sp(2). Then there is only one possible solution if we require

that the Lagrangian carries no dimensionful parameters. The moduli space is still C
4/Zk

1Our notation is such that Sp(1) has rank 1. Thus Sp(2) ∼= SO(5) ⊂ SO(6) ∼= SU(4).
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as in the N = 6 case, but the metric on the moduli space can be different. This theory

is interesting since we know that, on the gravity side, there are precisely two solutions on

AdS4×S
7 [34 – 36]. One solution gives the usual round metric on S7 and has N = 8 super-

symmetry, which is broken to N = 6 after orbifolding by Zk. The isometry on the sphere

reduces from SO(8) to SU(4)×U(1). The other solution has the “squashed” metric on S7

and has N = 1 supersymmetry. The isometry on S7 is Sp(2)× Sp(1). After orbifolding by

Zk, we still have N = 1 supersymmetry, but the isometry is broken to Sp(2)×U(1). So we

conjecture that the N = 1 superconformal Chern-Simons theory is dual to the supergravity

solution with the squashed metric on the sphere.

In section 2, we introduce notation and show how we construct the N = 1 supercon-

formal Chern-Simons theories with matter fields. In section 3, we review the supergravity

solutions on AdS4×S
7 and their quotients, and relate them with the superconformal Chern-

Simons-matter theories described in section 2. In the appendix, we explain the derivation

of the N = 1 superconformal theories in more detail and show the invariance of the action

under the superconformal transformation explicitly.

2. Construction of the N = 1 superconformal Chern-Simons-matter the-

ories

In this section, we will construct the N = 1 superconformal Chern-Simons-matter theories

in three dimensions with Sp(2) × U(1) global symmetry starting from the conformal field

theories proposed in [14].

2.1 Review of N = 6 superconformal Chern-Simons-matter theories

First, let us present the N = 6 superconformal theory in three dimensions in the nota-

tion of [32]. The theory has the gauge group U(N) × U(N) and there are four complex

scalars (XA)aâ in the representation (N,N) under the gauge group and (XA)âa in (N,N)

where A = 1, · · · , 4. A lower index labels the 4 representation of the global SU(4) R-

symmetry and an upper index the complex-conjugate 4̄. In the same way, we have the

fermionic fields (ΨA)aâ and (ΨA)âa, which are two-component spinors. The bar on Ψ̄A

indicates transposition, followed by right multiplication by γ0. Note that we do not take

an additional complex conjugation. The 2× 2 Dirac matrices satisfy {γµ, γν} = 2ηµν with

ηµν = diag(−1, 1, 1). We will use a Majorana representation and choose a basis such that

γµνλ = ǫµνλ. For example, γ0 = iσ2, γ1 = σ1, and γ2 = σ3. The U(N) gauge fields are

hermitian matrices Aa
b and Ââ

b̂
. The covariant derivatives are

DµXA = ∂µXA + i(AµXA −XAÂµ)

DµX
A = ∂µX

A + i(ÂµX
A −XAAµ) .

(2.1)

The Lagrangian consists of several parts:

Lkin =
k

2π
tr

(

−DµXADµXA + iΨ̄Aγ
µDµΨA

)

LCS =
k

2π
ǫµνλtr

(

1

2
Aµ∂νAλ +

i

3
AµAνAλ −

1

2
Âµ∂νÂλ −

i

3
ÂµÂνÂλ

)
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L4a =
k

2π

[

iǫABCDtr
(

Ψ̄AXBΨCXD

)

− iǫABCDtr
(

Ψ̄AXBΨCXD
)]

L4b =
k

2π
itr

(

Ψ̄AΨAXBX
B − Ψ̄AΨAXBXB

)

L4c =
k

2π
2itr

(

Ψ̄AΨBXAXB − Ψ̄BΨAXBX
A
)

Lpot =
k

2π

1

3
tr

[

XAXAX
BXBX

CXC +XAX
AXBX

BXCX
C (2.2)

+4XAX
BXCX

AXBX
C − 6XAXBX

BXAX
CXC

]

.

Note that we assume k is positive to give the correct sign for the X field kinetic term.

When k is negative, the signs of the first two terms in Lkin will change and the other terms

change appropriately, in addition to suitable changes in the supersymmetry transformation

rules.

The supersymmetry transformation is given by

δXA = iΓI
AB ǭ

I ΨB

δXA = −iΓ̃IABΨ̄B ǫ
I

δΨA = ΓI
ABγ

µ ǫI DµX
B + δ3ΨA

δΨA = −Γ̃IABγµ ǫI DµXB + δ3Ψ
A

δAµ = ΓI
AB ǭ

I γµΨAXB − Γ̃IABXBΨ̄Aγµ ǫ
I

δÂµ = ΓI
ABX

B ǭI γµΨA − Γ̃IABΨ̄Aγµ ǫ
I XB ,

(2.3)

where

δ3Ψ
A = [Γ̃IAB(XCX

CXB −XBX
CXC) − 2Γ̃IBCXBX

AXC ]ǫI

δ3ΨA = [ΓI
AB(XCXCX

B −XBXCX
C) − 2ΓI

BCX
BXAX

C ]ǫI .
(2.4)

Here I runs from 1 to 6 and labels the 6 representation of SO(6). ΓI
AB is the Clebsch-

Gordan coefficient that transforms two 4s into 6. ΓI
AB = −ΓI

BA and Γ̃I = (ΓI)†. Note that

there is a global U(1) symmetry under which XA and ΨA has charge +1 and XA and ΨA

charge -1. The total global symmetry is SU(4)R × U(1). Let us briefly mention how the

supersymmetries of (2.2) are preserved [32]. Supersymmetric variations of Lkin and LCS

almost cancel out. But there are some remaining terms that require the additional terms

in the Lagrangian. The variation due to δAµ in the spinor kinetic term in Lkin is canceled

out by varying the X fields in L4 = L4a + L4b + L4c. The variations due to δAµ in the X

kinetic term in Lkin and δΨ(without δ3Ψ) in L4 are canceled out by the variation of δ3Ψ in

the spinor kinetic term if we choose the variation δ3Ψ
A and δ3ΨA as shown in (2.4). The

δ3Ψ variation of L4 is canceled out by the X variation of Lpot. So the whole Lagrangian is

supersymmetric.

2.2 N = 1 superconformal Chern-Simons-matter theories

Here, we will construct N = 1 superconformal field theory with Sp(2) × U(1) symmetry.

First, let us impose the Sp(2) invariance condition. Note that Sp(2) is the intersection of

– 3 –
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SU(4) and Sp(4,C). Therefore, we have an invariant antisymmetric 4×4 tensor ΩAB under

Sp(2). Also, we expect the supersymmetry is reduced from N = 6 to N = 1. Since ΓI
AB

for each I is a non-degenerate antisymmetric 4 × 4 tensor, a natural way to proceed is to

look for a theory in which the supersymmetric transformation is given by (2.3) with ΓI
AB ǫ

I

replaced by ǫΩAB with a spinor ǫ that is a singlet under Sp(2) ∼= SO(5). We will also define

ΩAB such that ΩABΩAC = δB
C . For example, we can use Γ1 = iσ2 ⊗1, ǫI = ǫ(1, 0, 0, 0, 0, 0),

ΩAB = ΩAB = Γ1.

Since we have an additional antisymmetric invariant tensor ΩAB compared to SU(4)

symmetric case, additional terms are allowed in the Lagrangian. For example, terms such as

ΩADΩBCΨ̄AΨBXCXD are allowed. The most general possible forms with no dimensionful

parameters are found in the appendix. Starting from Lkin + LCS in (2.2), we can look for

a suitable linear combination of La,b,c and Lpot together with L′ that is invariant under

supersymmetry. There are only two possible solutions. One is the N = 6 superconformal

Chern-Simons theory with matter fields constructed in [14] in the notation of [32]. The

other is the N = 1 theory whose Lagrangian is given by

L =
k

2π
tr

[

−DµXADµXA + iΨ̄Aγ
µDµΨA

+ ǫµνλ

(

1

2
Aµ∂νAλ +

i

3
AµAνAλ −

1

2
Âµ∂νÂλ −

i

3
ÂµÂνÂλ

)

− iΨ̄AΨAXBX
B + iΨ̄AΨAXBXB

− 2iΩADΩBCΨ̄AΨBXCXD + 2iΩADΩBCΨ̄AΨBXCX
D

−XAX
AXBX

BXCX
C −XAXAX

BXBX
CXC + 2XAXBX

BXAX
CXC

]

.

(2.5)

In the appendix, it is shown explicitly that classically the action is invariant under super-

conformal symmetry as well as supersymmetry. Due to the presence of the antisymmetric

tensor ΩAB in the Lagrangian (2.5), it is clear that no other supersymmetries will be

preserved. Note that the bosonic potential can be written in the form

V =
k

2π
tr

(

NANA

)

, (2.6)

where

NA = ΩAB(XCX
CXB −XBX

CXC)

NA = ΩAB(XBXCX
C −XCXCX

B)
(2.7)

are factors that appear in the supersymmetric transformation δ3Ψ
A and δ3ΨA as shown

in (A.8). Therefore the bosonic potential is manifestly positive definite and the classical

moduli space is given by the solution NA = NA = 0. This condition is satisfied when X

fields are diagonalized. It is straightforward to check that all off-diagonal excitations are

generically massive. Therefore the gauge symmetry is generically broken to U(1)N ×U(1)N

up to permutations of the diagonal elements. Note that the moduli space is supersymmetric

– 4 –
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since NA = 0 implies δ3ΨA = 0, which in turn implies δΨA = 0 in the vacuum. For each

U(1)×U(1), the matter fields are charged under only one linear combination of the U(1)’s.

But the U(1) that couples to the matter fields do not preserve the gauge symmetry in the

presence of the Chern-Simons terms, and instead the gauge symmetry reduces to Zk due

to flux quantization conditions [14]. Hence the classical moduli space is given by (C4/Zk)
N

up to permutations. But the Lagrangian has only Sp(2)×U(1) symmetry due to the terms

with the antisymmetric tensor ΩAB. Therefore, although the classical moduli space does

not see any Sp(2) × U(1) structure, the low energy effective theory will have a non-trivial

metric on the target space with Sp(2) × U(1) symmetry.

One may worry that the conformal invariance of the classical action may be broken by

quantum effects. It turns out that there is no marginal operator besides the Lagrangian

itself and that the only relevant operators consistent with supersymmetry are the mass

terms in the combination

tr[imΨ̄AΨA −m2XAXA −m(XAX
AXBX

B −XAXBX
BXB)] . (2.8)

To make this combination supersymmetric, one needs to modify the supersymmetry trans-

formation by adding δ′ΨA = −mΩABǫXB to the fermion transformation. However, such

terms cannot be generated perturbatively if one assumes that supersymmetry is unbroken.

The flat directions parameterized by diagonal X’s represent supersymmetric vacua, and

the standard argument shows that they are not lifted by perturbative effects. On the other

hand, the mass terms would lift these vacua, except for the one at the origin. Thus, no

relevant operators are generated perturbatively. We also note that the level k is not shifted

at one-loop since the field content of the N = 1 theories is the same as that of the N = 6

theories, where k is not shifted [14].

It is also interesting to check whether a similar construction can yield a N = 5 su-

persymmetric Lagrangian for which the supercharges are in the 5 of SO(5) ∼= Sp(2) rep-

resentation. It turns out that we are not able to construct a solution. The procedure is

the same as the previous situation and a sketchy description of the calculation is in the

appendix. This may be related to the fact that there does not exist a supergravity solution

on AdS4 × S7/Zk with N = 5 supersymmetry [34].

3. Dual M-theory description

Suppose the eleven dimensional spacetime is given in the form R
3 × X where X is an

eight-dimensional cone over S7/Zk, but with the squashed metric on it. The N = 1

superconformal theory can be obtained by placing N M2-branes on the tip of the cone [37 –

40], which is a singular Spin(7) manifold.2 We propose that these superconformal theories

are the N = 1 Chern-Simons-matter theories constructed in the previous section. Note

that the cone over S7 has N = 1 supersymmetry, whose supercharge is a singlet under

the isometry Sp(2) × Sp(1) of the squashed S7. The orbifolding does not project out this

singlet since Zk acts on the U(1) subgroup of Sp(1).

2M theory on a class of Spin(7) manifolds was studied in [41, 42].

– 5 –
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The near horizon geometry of these M2 branes is AdS4 × S7/Zk with the squashed

metric on S7/Zk. The isometry of the squashed S7 is Sp(2) × Sp(1), which is broken to

Sp(2) × U(1) by Zk. We note that it is identical to the global symmetry of the N = 1

superconformal Chern-Simons theories.

The supergravity solution on AdS4×S
7 with the squashed metric on S7 is given by [34]

ds2 =
R2

4
ds2AdS4

+R2ds2S7

F4 ∼ N ′ǫ4

R = (25π2N ′)1/6lp ,

(3.1)

where the metrics ds2AdS4
and ds2S7 have unit radius. One way to specify the metric on S7

is to use the Fubini-Study metric on P2(H), the quaternionic projective plane. We choose

a level surface of distance r from a point in P2(H). This distance r determines the degree

of distortion: near r = 0, the metric is almost round and it gets distorted as r becomes

large. The induced metric of the Fubini-Study metric on this seven dimensional surface

defines the squashed metric. Explicitly,

ds2S7 = κ2

(

dµ2 +
1

4
ω2

i sin2 µ+
1

4
λ2(νi + ωi cosµ)2

)

, (3.2)

where κ is the overall constant to be chosen later, and λ is related to the distance r such

that λ2 = 1
1+r2 , which parameterizes the degree of distortion. The one-forms νi and ωi,

i = 1, 2, 3, are defined by

νi = σi + Σi, ωi = σi − Σi , (3.3)

with σi and Σi satisfying

dσ1 = −σ2 ∧ σ3 , dΣ1 = −Σ2 ∧ Σ3 , (3.4)

etc. When λ2 = 1, the metric is that of the round sphere, which has SO(8) isometry. For

all other λ2, the isometry is Sp(2) × Sp(1). It is not generally an Einstein metric but it

becomes so when λ2 = 1 or 1/5. When λ2 = 1/5, there is only one Killing spinor, so it has

N = 1 supersymmetry. It has the weak G2 holonomy. The overall constant κ is chosen to

satisfy RS7 mn = 6δmn: κ2 = 1
4

for λ2 = 1 and κ2 = 9
20

for λ2 = 1
5
. The two supergravity

solutions are classically stable under the changes of the size and squashing parameters of

S7 [43]. There is actually a static domain wall interpolating the two solutions [44].

Since we want to quotient S7 by Zk, it is more convenient to write the metric in a form

that shows that S7 is an S1 bundle over CP3. Then the metric has the form [36]

ds2S7 = (dφ′ + ω)2 + ds2
CP3 , (3.5)

where ω is a potential for a non-trivial topology on CP3 and φ′ is the periodic coordinate

with period 2π. CP3 also admits a family of homogeneous metrics labeled by λ [45], for

which the U(1) fibration over CP3 gives the squashed S7 with the same parameter λ. λ2 = 1

is the standard Fubini-Study Einstein metric on CP3 and gives the round seven-sphere

– 6 –
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metric when put in (3.5). For other choices of λ2, the corresponding metric is non-Einstein

except at λ2 = 1/2. The supergravity solution on the squashed S7 corresponds to (3.5)

with λ2 = 1/5. Interestingly the metric on CP3 is not Einstein.

Given the form (3.5), it is easy to take the Zk quotient [14]. We set φ′ = φ/k with

φ = φ+ 2π. Then the metric is

ds2S7/Zk
=

1

k2
(dφ+ kω)2 + ds2

CP3 . (3.6)

Since the volume of S7 is reduced by a factor of k, the supergravity solution on AdS4×S
7 is

obtained by setting N ′ = kN and replacing ds2S7 by ds2S7/Zk

in (3.1). The supersymmetry

is still N = 1 since the Killing spinor is a singlet under Sp(2) × Sp(1).

Let us mention that, when k becomes its negative, N ′ goes to −N ′ and both N = 6

round-sphere and N = 1 squashed-sphere supergravity solutions reduce to N = 0 [34]. The

supersymmetry becomes again N = 6 or N = 1 if we exchange the 8s and 8c representations

of SO(8), of which SU(4) × U(1) and Sp(2) × Sp(1) are subgroups, and change the left-

squashed sphere to the right-squashed one in N = 1 case, which flips the minus signs

in (3.4). Let us see what this corresponds to in the field theory side. Note that the sign of

the bosonic kinetic term of (2.2) or (2.5) changes when k becomes its negative so that the

kinetic and Chern-Simons terms in the Lagrangian become

k

2π
tr

[

DµXADµXA − iΨ̄Aγ
µDµΨA

+ ǫµνλ

(

1

2
Aµ∂νAλ +

i

3
AµAνAλ −

1

2
Âµ∂νÂλ −

i

3
ÂµÂνÂλ

)]

.

(3.7)

The relative sign between boson and fermion matter fields is determined by supersymme-

try. All the remaining terms change up to appropriate signs. In this form, the original

supersymmetry transformation in each case ceases to be a symmetry of the Lagrangian.

Instead, a different supersymmetry such that

δAµ , δÂµ , δ3Ψ
A → −δAµ ,−δÂµ ,−δ3Ψ

A (3.8)

becomes a symmetry of the Lagrangian.

4. Conclusions

In this paper, we started with three-dimensional U(N) × U(N) Chern-Simons theories

with bi-fundamental bosonic and fermionic matter fields in 4 and 4̄ of SU(4). We then

supersymmetrize this Lagrangian. If the final Lagrangian is to be invariant under N = 6

supersymmetry with SU(4)R × U(1) global symmetry, we end up with the Lagrangian

in [14, 32]. If we loosen the condition so that the final Lagrangian has N = 1 supersymmetry

with Sp(2) × U(1) ⊂ SU(4) × U(1) global symmetry, we have the Lagrangian (2.5) in

addition to the previous N = 6 Lagrangian. Both have the same classical moduli space.

The situation is very similar to the supergravity side since there are also two possible

solutions on AdS4 × S7/Zk. In one case, the metric on the sphere is the usual round one,

whereas in the other case, we have the squashed sphere. Therefore we propose that the

N = 1 superconformal Chern-Simons-matter theory with the Lagrangian (2.5) describes

N M2-branes on the tip of the cone with squashed S7/Zk base in M-theory.

– 7 –
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A. Detailed construction of the N = 1 superconformal theories

In this appendix, we show how we arrive at the N = 1 superconformal Chern-Simons La-

grangian (2.5) starting from the Chern-Simons term and the bosonic and fermionic matter

terms Lkin +LCS in (2.2). Since we have only Sp(2) ⊂ SU(4) symmetry in the Lagrangian,

there are additional terms allowed in the Lagrangian. The most general ΨΨXX combina-

tion of marginal operators we additionally have is

L′ = a1Ω
ADΩBCΨ̄AΨBXCXD + a2ΩADΩBCΨ̄AΨBXCX

D

+ a3Ω
ACΩBCΨ̄AXBΨCXD + ā3ΩACΩBDΨ̄AXBΨCXD

+ a4Ω
ABΩCDΨ̄AXBΨCXD + ā4ΩABΩCDΨ̄AXBΨCXD .

(A.1)

There is also a part of the Lagrangian which consists of 6 X fields such as ΩΩXXXXXX,

which we call L′′.

We will deform (2.2) by varying coefficient for each term in L4a,b,c and Lpot. So the

Lagrangian we consider is the sum of

Lkin =
k

2π
tr

(

−DµXADµXA + iΨ̄Aγ
µDµΨA

)

LCS =
k

2π
ǫµνλtr

(

1

2
Aµ∂νAλ +

i

3
AµAνAλ −

1

2
Âµ∂νÂλ −

i

3
ÂµÂνÂλ

)

L4a =
k

2π

[

iᾱ1ǫ
ABCDtr

(

Ψ̄AXBΨCXD

)

− iα1ǫABCDtr
(

Ψ̄AXBΨCXD
)]

L4b =
k

2π
itr

(

α2,1Ψ̄
AΨAXBX

B − α2,2Ψ̄AΨAXBXB

)

L4c =
k

2π
2itr

(

α3,1Ψ̄AΨBXAXB − α3,2Ψ̄
BΨAXBX

A
)

Lpot =
k

2π

1

3
tr

[

α4,1X
AXAX

BXBX
CXC + α4,2XAX

AXBX
BXCX

C

+ 4α4,3XAX
BXCX

AXBX
C − 6α4,4X

AXBX
BXAX

CXC

]

.

(A.2)

with the addition of L′ and L′′.
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We now check under what condition the Lagrangian satisfies N = 1 supersymmetry

given by

δXA = iΩAB ǭΨ
B

δXA = iΩABΨ̄B ǫ

δΨA = ΩABγ
µ ǫDµX

B + δ3ΨA

δΨA = ΩABγµ ǫDµXB + δ3Ψ
A

δAµ = ΩAB ǭ γµΨAXB + ΩABXBΨ̄Aγµ ǫ

δÂµ = ΩABX
B ǭ γµΨA + ΩABΨ̄Aγµ ǫXB ,

(A.3)

where δ3 variation is to be determined.

Let’s first vary A field in the spinor kinetic term in Lkin. This yields a term

k

2π
2ΩBCtr

[

ǭΨA(Ψ̄AΨBXC −XCΨ̄BΨA)
]

. (A.4)

The same term is generated by varying XB in the second term in L4a. Such terms can

arise in the terms with a1 and a2 coefficients in L′ by varying XB with the constraint that

a2 = −a1. Then all such terms cancel out when

2 − 2α1 + ia2 = 0 . (A.5)

Then the variation δA(ΨDΨ) + δAL4a + δXL′ vanishes when

α2,1 = α2,2 ≡ α2, α3,1 = α3,2 ≡ α3

α2 = 2α1 − 1, α3 = α1, ia2 = 2α1 − 2 ,
(A.6)

and a3 = a4 = 0.

Next, we consider the δAµ variation in the X field kinetic term and δΨ(without δ3Ψ)

in L4a,b,c and L′. Thess variations cancel against the δ3Ψ variation in the spinor kinetic

term if we choose

δ3Ψ
A = −ΩAB ǫ (2α1 − 1)(XCX

CXB −XBX
CXC) + 2α1Ω

BC ǫXBX
AXC

δ3ΨA = −ΩAC ǭ (2α1 − 1)(XCXDX
D −XDXDX

C) + 2α1 ǭΩHKX
KXAX

H .
(A.7)

Then the variations in L4a,b,c due to δ3Ψ have the form of the variation of terms with six

X fields, plus some additional terms, which vanish when α1(α1 − 1) = 0. That is, when

α1 = 0 or α1 = 1. The case with α1 = 1 is the N = 6 superconformal field theory. When

α1 = 0, remembering (A.6), we have the Lagrangian (2.5):

L =
k

2π
tr

[

−DµXADµXA + iΨ̄Aγ
µDµΨA

+ ǫµνλ

(

1

2
Aµ∂νAλ +

i

3
AµAνAλ −

1

2
Âµ∂νÂλ −

i

3
ÂµÂνÂλ

)

− iΨ̄AΨAXBX
B + iΨ̄AΨAXBXB

− 2iΩADΩBCΨ̄AΨBXCXD + 2iΩADΩBCΨ̄AΨBXCX
D

−XAX
AXBX

BXCX
C −XAXAX

BXBX
CXC + 2XAXBX

BXAX
CXC

]

.
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The δ3ΨA and δ3Ψ
A in the supersymmetry transformation for the spinors are then given by

δ3Ψ
A = NA ǫ , δ3ΨA = NA ǫ , (A.8)

where NA and NA are defined in (2.7):

NA = ΩAB(XCX
CXB −XBX

CXC)

NA = ΩAB(XBXDX
D −XDXDX

B) .

Let us show that the theory has the superconformal symmetry. Following the expres-

sions in [32], we replace the Poincare supersymmetry parameter ǫ with γ · xη and add an

additional term to the transformation of the spinor field

δ′ΨA = ΩABX
Bη

δ′ΨA = ΩABXBη .
(A.9)

Then it is straightforward to check that the Lagrangian is invariant under this supercon-

formal symmetry.

Finally, let us briefly remark on the possibility of having N = 5 supersymmetry. That

is, the supersymmetry generators transform as 5 under SO(5) ∼= Sp(2). In this case, we

require the Lagrangian be invariant under the supersymmetry transformations

δXA = i(ΓI
AB − ΩAB) ǭI ΨB

δΨA = (ΓI
AB − ΩAB)γµ ǫI DµX

B + δ3ΨA ,
(A.10)

with their adjoints. We can follow the same procedure as above. The relations (A.6) follow

as before since they do not involve the terms of the form ΩΩψψXX. But when we next

consider the variation due to the gauge boson Aµ in the X field kinetic term and the spinor

field Ψ in L4a,b,c and L′, in addition to the terms

2i(Γ̃IBC + ΩBC)(Ψ̄Aγ
µ ǫI α1Dµ(XBX

AXC)

+ i(Γ̃IBC + ΩBC)(Ψ̄Bγ
µ ǫI (2α1 − 1)Dµ(XCX

AXA −XAX
AXC)

(A.11)

which can be canceled out by defining δ3Ψ
A just as before, we are left with additional terms

−2i(α1 − 1)Γ̃IABΩCDΨ̄Cγ
µǫI(ΩADXBXEDµXE − ΩADDµXEX

EXB

+ ΩAEDµXBX
EXD − ΩAEXDX

EDµXB)
(A.12)

which cannot be written in a form (Γ̃IBC +ΩBC)Ψ̄Aγµ ǫ
I DµM

A
BC where MA

BC is a product

of X. This cannot be absorbed by a redefinition of δ3Ψ̄
A. Therefore α1 = 1 and terms

in (A.1) have to vanish. Then we get back to the N = 6 supersymmetric case. Therefore

we conclude that the N = 5 supersymmetric Lagrangian whose supercharges are in the 5

representation of SO(5) does not exist.
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[arXiv:0804.2662].

[8] J.P. Gauntlett and J.B. Gutowski, Constraining maximally supersymmetric membrane

actions, arXiv:0804.3078.

[9] P.-M. Ho, Y. Imamura and Y. Matsuo, M2 to D2 revisited, JHEP 07 (2008) 003

[arXiv:0805.1202].

[10] M.A. Bandres, A.E. Lipstein and J.H. Schwarz, Ghost-free superconformal action for multiple

M2-branes, JHEP 07 (2008) 117 [arXiv:0806.0054].

[11] J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, Supersymmetric

Yang-Mills theory from lorentzian three-algebras, JHEP 08 (2008) 094 [arXiv:0806.0738].

[12] J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M -folds,

JHEP 05 (2008) 038 [arXiv:0804.1256].

[13] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, N = 8 superconformal gauge

theories and M2 branes, arXiv:0805.1087.

[14] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218].

[15] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[16] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[17] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].

[18] M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories

and AdS4/CFT3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519].

[19] J. Bhattacharya and S. Minwalla, Superconformal indices for N = 6 Chern Simons theories,

arXiv:0806.3251.

– 11 –

http://jhep.sissa.it/stdsearch?paper=11%282004%29078
http://arxiv.org/abs/hep-th/0411077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C045020
http://arxiv.org/abs/hep-th/0611108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C065008
http://arxiv.org/abs/0711.0955
http://jhep.sissa.it/stdsearch?paper=02%282008%29105
http://arxiv.org/abs/0712.3738
http://arxiv.org/abs/0709.1260
http://jhep.sissa.it/stdsearch?paper=05%282008%29025
http://arxiv.org/abs/0803.3242
http://jhep.sissa.it/stdsearch?paper=05%282008%29054
http://arxiv.org/abs/0804.2662
http://arxiv.org/abs/0804.3078
http://jhep.sissa.it/stdsearch?paper=07%282008%29003
http://arxiv.org/abs/0805.1202
http://jhep.sissa.it/stdsearch?paper=07%282008%29117
http://arxiv.org/abs/0806.0054
http://jhep.sissa.it/stdsearch?paper=08%282008%29094
http://arxiv.org/abs/0806.0738
http://jhep.sissa.it/stdsearch?paper=05%282008%29038
http://arxiv.org/abs/0804.1256
http://arxiv.org/abs/0805.1087
http://jhep.sissa.it/stdsearch?paper=10%282008%29091
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://jhep.sissa.it/stdsearch?paper=09%282008%29072
http://arxiv.org/abs/0806.1519
http://arxiv.org/abs/0806.3251


J
H
E
P
1
1
(
2
0
0
8
)
0
8
2

[20] T. Nishioka and T. Takayanagi, On type IIA Penrose limit and N = 6 Chern-Simons

theories, JHEP 08 (2008) 001 [arXiv:0806.3391].

[21] Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, Scaling limit of N = 6 superconformal

Chern-Simons theories and lorentzian Bagger-Lambert theories, Phys. Rev. D 78 (2008)

105011 [arXiv:0806.3498].

[22] Y. Imamura and K. Kimura, Coulomb branch of generalized ABJM models,

arXiv:0806.3727.

[23] J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP

09 (2008) 040 [arXiv:0806.3951].

[24] A. Armoni and A. Naqvi, A non-supersymmetric large-N 3D CFT and its gravity dual,

JHEP 09 (2008) 119 [arXiv:0806.4068].

[25] D. Gaiotto, S. Giombi and X. Yin, Spin chains in N = 6 superconformal

Chern-Simons-matter theory, arXiv:0806.4589.

[26] C. Ahn, Towards holographic gravity dual of N = 1 superconformal Chern-Simons gauge

theory, JHEP 07 (2008) 101 [arXiv:0806.4807].

[27] G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of

N = 6 superconformal Chern-Simons theory, arXiv:0806.4959.

[28] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons

theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977].

[29] A. Hanany, N. Mekareeya and A. Zaffaroni, Partition functions for membrane theories, JHEP

09 (2008) 090 [arXiv:0806.4212].

[30] J. Bagger and N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories,

arXiv:0807.0163.

[31] S. Terashima, On M5-branes in N = 6 membrane action, JHEP 08 (2008) 080

[arXiv:0807.0197].

[32] M.A. Bandres, A.E. Lipstein and J.H. Schwarz, Studies of the ABJM theory in a formulation

with manifest SU(4) R-symmetry, JHEP 09 (2008) 027 [arXiv:0807.0880].

[33] I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in supersymmetric

QCD, Nucl. Phys. B 241 (1984) 493.

[34] M.A. Awada, M.J. Duff and C.N. Pope, N = 8 supergravity breaks down to N = 1, Phys.

Rev. Lett. 50 (1983) 294.

[35] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Spontaneous supersymmetry breaking by the

squashed seven sphere, Phys. Rev. Lett. 50 (1983) 2043.

[36] B.E.W. Nilsson and C.N. Pope, Hopf fibration of eleven-dimensional supergravity, Class. and

Quant. Grav. 1 (1984) 499.

[37] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.

B 556 (1999) 89 [hep-th/9905104].

[38] D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3

(1999) 1 [hep-th/9810201].

– 12 –

http://jhep.sissa.it/stdsearch?paper=08%282008%29001
http://arxiv.org/abs/0806.3391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C105011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C105011
http://arxiv.org/abs/0806.3498
http://arxiv.org/abs/0806.3727
http://jhep.sissa.it/stdsearch?paper=09%282008%29040
http://jhep.sissa.it/stdsearch?paper=09%282008%29040
http://arxiv.org/abs/0806.3951
http://jhep.sissa.it/stdsearch?paper=09%282008%29119
http://arxiv.org/abs/0806.4068
http://arxiv.org/abs/0806.4589
http://jhep.sissa.it/stdsearch?paper=07%282008%29101
http://arxiv.org/abs/0806.4807
http://arxiv.org/abs/0806.4959
http://jhep.sissa.it/stdsearch?paper=09%282008%29002
http://arxiv.org/abs/0806.4977
http://jhep.sissa.it/stdsearch?paper=09%282008%29090
http://jhep.sissa.it/stdsearch?paper=09%282008%29090
http://arxiv.org/abs/0806.4212
http://arxiv.org/abs/0807.0163
http://jhep.sissa.it/stdsearch?paper=08%282008%29080
http://arxiv.org/abs/0807.0197
http://jhep.sissa.it/stdsearch?paper=09%282008%29027
http://arxiv.org/abs/0807.0880
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB241%2C493
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C50%2C294
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C50%2C294
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C50%2C2043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C1%2C499
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C1%2C499
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB556%2C89
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB556%2C89
http://arxiv.org/abs/hep-th/9905104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C3%2C1
http://arxiv.org/abs/hep-th/9810201


J
H
E
P
1
1
(
2
0
0
8
)
0
8
2

[39] B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical

singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014].
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